Inference in first-order logic

— & A HERE

Last chapter

LA R AT ST IR, T — B Z AR T X SRR 17
AEREATIRSE, RT3 S B ik R)

First-order logic:
— objects and relations are semantic primitives (F&7<)
— syntax: constants, functions, predicates, equality, quantifiers

o« BRI EAE B AME TR A T RS R R E

Increased expressive power: sufficient to define wumpus world

£ R AR B R, SR T . e
TVCER R SR I 5 A F AN /] 2) 24 B AT G AL

Outline

Reducing first-order inference to propositional
inference

Unification (&—)

Generalized Modus Ponens (— %Ak 43 55 810D
Forward and backward chaining

Resolution

Universal instantiation (Ul)

RSB
Every instantiation of a universally quantified sentence is entailed by it:
AR AR 2 B B A S
VYV o
Subst({v/g},«)

for any variable (Z8&) vand ground term (3ZIi) g

E.g., VXKINng(x) A greedy(x) = Evil(x) vyields
King(John) A Greedy(John) = Evil(John)
King(Richard) A Greedy(Richard) = Evil(Richard)
King (Father(John)) A Greedy(Father(John)) = Evil (Father(John))

Existential instantiation (El)

FFAESEBIAL

For any sentence, variable v, and new constant symbol k

that does not appear elsewhere in the knowledge base:
Vv o
Subst({v/k}, a)

E.g., IxCrown(x) A OnHead (x, John) Yields

Crown(C,) AOnHead (C,, John)
provided C, is a new constant symbol, called a Skolem constant CHiRME)

Another example: from =x d(x”)/dy = x” we obtain

d(e’ /dy) =¢e’
provided e is a new constant symbol

Existential instantiation contd.

Ul can be applied several times to add new sentences;
the new KB is logically equivalent to the old

SRR S AT BAZ2 0N AT 3R 15 VF 2 AN [R) (1 25 2R

El can be applied once to replace the existential sentence;
the new KB is not equivalent to the old,

but is satisfiable iff the old KB was satisfiable

FAAESEFIME] LN — Kk, 8 e U AE A 1B A

BrRREZ A BRSSO T IRFRE, (B XA E R R R ZE i 2 i, B
FRIRTUR 2 7 AT A

Reduction to propositional inference
Ta] Ak 2 gy AT AR

Suppose the KB contains just the following:
vx King(x) A Greedy(x) = Evil(x)
King(John)

Greedy(John)
Brother(Richard,John)

gyus!

Instantiating the universal sentence in all possible ways, we have
King(John) A Greedy(John) = Evil(John)
King(Richard) A Greedy(Richard) = Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

The new KB is propositionalized (fi7/&1t,) : proposition symbols are
King (John), Greedy(John), Evil (John), King(Richard) etc

Reduction contd.

Claim: Every FOL KB can be propositionalized so as to preserve
entailment

B — /BB 48 HR R R R DL A A 2 ¢ R AT LR FF

Claim: A ground sentence is entailed by new KB iff entailed by
original KB

Idea: propositionalize KB and query, apply resolution, return
result

Problem: with function symbols, there are infinitely many (JG[R
£2/~) ground terms (FEI) |,
— e.g., Father(Father(Father(John)))

Reduction contd.

Theorem: Herbrand (1930). If a sentence a is entailed by an FOL KB, it is
entailed by a finite subset of the propositionalized KB

EEL R AR 1 — I RR P G, TAEEE— P
R T TR i i

Idea: Forn=0to e= do

create a propositional KB by instantiating with depth-n terms
see if a is entailed by this KB

Problem: works if a is entailed, loops if a is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is

semidecidable (-n]Z3E 1) (algorithms exist that say yes to every
entailed sentence, but no algorithm exists that also says no to every
nonentailed sentence.)

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant/ S 5<¢] sentences.

E.g., from:
Vx King(x) A Greedy(x) = Evil(x)
King(John)
Yy Greedy(y)
Brother(Richard,John)

it seems obvious that Evil(John), but propositionalization produces lots of
facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates/if id] and n constants, there are p-nk instantiations.

With function symbols, it gets much much worse!

Outline

Reducing first-order inference to propositional
inference

Unification (5 —)

Generalized Modus Ponens (— %Ak 43 55 810D
Forward and backward chaining

Resolution

Unification (& —)
N ERAFAE A B Hofd 28 IR I BT HE KB A WiEA) 52415, A4 N H
05, HLR] LW ZEmrI451e

We can get the inference immediately if we can find a substitution (E#:) 6
such that King(x) and Greedy(x) match King(John) and Greedy(y)

0 = {x/John,y/John} works

Unify(a,B) =98 if ab = 36

p q 6
Knows(John,x) | Knows(John,Jane)

Knows(John,x) | Knows(y,0lJ)
Knows(John,x) | Knows(y,Mother(y))

Knows(John,x) | Knows(x,0)J)

Unification (5 —)

IR AT B o 28 i BT R AIKBH O G HIEA) 2248, B4 M
O)5, Fin] LIS R4

We can get the inference immediately if we can find a substitution (E#t) 0
such that King(x) and Greedy(x) match King(John) and Greedy(y)

0 = {x/John,y/John} works

Unify(a,B) =98 if ab = 36

p q 6
Knows(John,x) | Knows(John,Jane) {x/Jane}

Knows(John,x) | Knows(y,0lJ)
Knows(John,x) | Knows(y,Mother(y))

Knows(John,x) | Knows(x,0)J)

Unification (5 —)

IR AT B o 28 i BT R AIKBH O G HIEA) 2248, B4 M
O)5, Fin] LIS R4

We can get the inference immediately if we can find a substitution (E#t) 0
such that King(x) and Greedy(x) match King(John) and Greedy(y)

0 = {x/John,y/John} works

Unify(a,B) =98 if ab = 36

P q 0
Knows(John,x) | Knows(John,Jane) {x/Jane}
Knows(John,x) | Knows(y,0J) {x/0J,y/lohn}

Knows(John,x) | Knows(y,Mother(y))

Knows(John,x) | Knows(x,0)J)

Unification (5 —)

IR AT B o 28 i BT R AIKBH O G HIEA) 2248, B4 M
O)5, Fin] LIS R4

We can get the inference immediately if we can find a substitution (E#t) 0
such that King(x) and Greedy(x) match King(John) and Greedy(y)

0 = {x/John,y/John} works

Unify(a,B) =98 if ab = 36

p q 0

Knows(John,x) | Knows(John,Jane) {x/Jane}

Knows(John,x) | Knows(y,0J) {x/0J,y/lohn}
Knows(John,x) | Knows(y,Mother(y)) {y/John,x/Mother(John)}
Knows(John,x) | Knows(x,0)J)

15

Unification (5 —)

IR AT B o 28 i BT R AIKBH O G HIEA) 2248, B4 M
O)5, Fin] LIS R4

We can get the inference immediately if we can find a substitution (E#t) 0
such that King(x) and Greedy(x) match King(John) and Greedy(y)

0 = {x/John,y/John} works

Unify(a,B) =98 if ab = 36

p q 0

Knows(John,x) | Knows(John,Jane) {x/Jane}

Knows(John,x) | Knows(y,0J) {x/0J,y/lohn}
Knows(John,x) | Knows(y,Mother(y)) {y/John,x/Mother(John)}
Knows(John,x) | Knows(x,0)J) {fail}

Standardizing apart (Fr{fEft.7) %) eliminates overlap of variables, e.g.,

Knows(z,,,0))
16

Unification (5 —)

To unify Knows(John,x) and Knows(y,z),
0 = {y/John, x/z } or 8 = {y/John, x/John, z/John}

The first unifier is more general (51— /1%) than the second.
— AR B) HUE PR] bl s 2

There is a single most general unifier (MGU) that is unique up to
renaming of variables.

KA RIE AN S X, FE—PHE— a4, A
75 S AL B [B am 44 re ME— 19 .

MGU ={y/John, x/z }

17

Outline

Reducing first-order inference to propositional
inference

Unification (&—)

Generalized Modus Ponens (— #4023 550D
Forward and backward chaining

Resolution

18

Generalized Modus Ponens (GMP)

Modus Ponens (JHZEHEEE, 73 230D (for Horn Form): complete for Horn
KBs

Ao &y OGN NAC, =
)54
GMP (—fcAk o B R -
P P2 o PR (PL AP A .o AP, =0)

where p;'d = p; 9 for all i

o[%
p,' is King(John) p, is King(x)
p,' is Greedy(y) P, is Greedy(x)
0 is {x/John,y/John} q is Evil(x)

q 8 is Evil(John)
GMP used with KB of definite clausesfiffi £ -7 (exactly one positive literal)

All variables assumed universally quantified .

Semi-decidability (3~H] #|%E)

* First-order logic (even restricted to only Horn
clauses) is semi-decidable.

— If KB entails f, algorithms exist to prove f in finite
time.

— If KB does not entail f, no algorithm can show this
in finite time.

Soundness of GMP

Need to show that
P1's s Py (P A o AP, = Q) FQB

provided that p,'0 = p,6 for all i

Lemma: For any sentence p, we have p [p®
1. (pyA...Ap,=Qq) |= (P A AP, =q)0=(pOA..APO=qb)
2. Py P, |= P A .. AP, |= P,/OA..ApP, O

3. From 1and 2, g6 follows by ordinary Modus Ponens

Completeness of GMP

* GMP: incomplete for FOL

— Not every sentence can be converted to Horn
form

e GMP: complete for FOL KB of definite clauses

Example knowledge base

The law says that it is a crime for an American to sell weapons to
hostile nations. The country Nono, an enemy of America, has
some missiles (3) | and all of its missiles were sold to it
by Colonel (1%) West, who is American.

Prove that Col. West is a criminal

Example knowledge base contd.

... itis a crime for an American to sell weapons to hostile nations:

Example knowledge base contd.

... itis a crime for an American to sell weapons to hostile nations:
American(x) A Weapon(y) A Sells(x,y,z) A Hostile(z) = Criminal(x)
Nono ... has some missiles

25

Example knowledge base contd.

... itis a crime for an American to sell weapons to hostile nations:
American(x) A Weapon(y) A Sells(x,y,z) A Hostile(z) = Criminal(x)

Nono ... has some missiles, i.e., 3x Owns(Nono,x) A Missile(x):
Owns(Nono,M,) and Missile(M,)
... all of its missiles were sold to it by Colonel West

26

Example knowledge base contd.

... itis a crime for an American to sell weapons to hostile nations:
American(x) A Weapon(y) A Sells(x,y,z) A Hostile(z) = Criminal(x)

Nono ... has some missiles, i.e., 3x Owns(Nono,x) A Missile(x):
Owns(Nono,M,) and Missile(M,)

... all of its missiles were sold to it by Colonel West
Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)

Missiles are weapons:

27

Example knowledge base contd.

... itis a crime for an American to sell weapons to hostile nations:
American(x) A Weapon(y) A Sells(x,y,z) A Hostile(z) = Criminal(x)
Nono ... has some missiles, i.e., 3x Owns(Nono,x) A Missile(x):
Owns(Nono,M,) and Missile(M,)
... all of its missiles were sold to it by Colonel West
Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)
Missiles are weapons:
Missile(x) = Weapon(x)
An enemy of America counts as "hostile”:

28

Example knowledge base contd.

... itis a crime for an American to sell weapons to hostile nations:
American(x) A Weapon(y) A Sells(x,y,z) A Hostile(z) = Criminal(x)
Nono ... has some missiles, i.e., 3x Owns(Nono,x) A Missile(x):
Owns(Nono,M,) and Missile(M,)
... all of its missiles were sold to it by Colonel West
Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)
Missiles are weapons:
Missile(x) = Weapon(x)
An enemy of America counts as "hostile”:
Enemy(x,America) = Hostile(x)
West, who is American ...
American(West)
The country Nono, an enemy of America ...

Enemy(Nono,America)

29

Outline

Reducing first-order inference to propositional
inference

Unification (&—)

Generalized Modus Ponens (— %Ak 43 55 810D
Forward and backward chaining

Resolution

30

Forward chaining algorithm

function FOL-FC-ASk (KB, o) returns a substitution or false

repeat until new is empty
new—{ }
for each sentence rin KB do
(pyA...N p, = ¢)— STANDARDIZE-APART(r)
for each @ such that (py A ... A p)8 = (py A ... A p)o
for some p}....,pl in KB
q' — SUBST(#, q)

if ¢’ is not a renaming of a sentence already in A'B or new then do

add ¢' to new

¢ «— UNIFY(¢', o)

if ¢ is not fail then return ¢
add new to KB

return false

31

Example knowledge base contd.

... itis a crime for an American to sell weapons to hostile nations:
American(x) A Weapon(y) A Sells(x,y,z) A Hostile(z) = Criminal(x)
Nono ... has some missiles, i.e., 3x Owns(Nono,x) A Missile(x):
Owns(Nono,M,) and Missile(M,)
... all of its missiles were sold to it by Colonel West
Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)
Missiles are weapons:
Missile(x) = Weapon(x)
An enemy of America counts as "hostile”:
Enemy(x,America) = Hostile(x)
West, who is American ...
American(West)
The country Nono, an enemy of America ...

Enemy(Nono,America)

32

Forward chaining proof

american(Wesr) | | missile(M) owns(Nono, M) | | enemy(Nono, America)
nmussile(x) A owns(Nono,x) /
o = sells(est,x, Nono) enemy(x,America) = hostile(x)
thissile(x) = weapon(x) y = (/M 6 = {x/Nono)
0= {x/M} \/ '} / | |
weapon(M) sells(West, M, Nono) hostile(Nono)

american(x) A weapon(y) A sells (x,3,2) A hostile(z) = crimmal(x)
0 = {x/West, y/M, z/Nono}

N

criminal(West)

Properties of forward chaining

Sound and complete for first-order definite clauses
(proof similar to propositional proof)

Datalog (F#EH) = first-order definite clauses + no functions (e.g., crime KB)
FC terminates for Datalog in poly iterations: at most p- n“ literals

May not terminate in general if « is not entailed

This is unavoidable: entailment with definite clauses is semidecidable (7] &€ /)

Efficiency of forward chaining

Simple observation: no need to match (JLFiC) a rule on iteration k
if a premise wasn't added on iteration k -1

—match each rule whose premise contains a newly added literal

Matching itself can be expensive

Database indexing (‘Z<5]) allows O(1) retrieval of known facts
e.g., query Missile(x) retrieves Missile(M)

Matching conjunctive premises against known facts is NP-hard

JURAE 5 0) 5 SR AL L & — > NP

35

Backward chaining algorithm

function FOL-BC-ASkK(KB, goals, #) returns a set of substitutions
inputs: KB, a knowledge base
goals, a list of conjuncts forming a query (6 already applied)
i, the current substitution, initially the empty substitution { }
local variables: answers, a set of substitutions, initially empty

if goals is empty then return {f}
q¢'— SuBsT(#, FIRST(goals))
for each sentence rin KB
where STANDARDIZE-APART(r) =(p; A ... N P, = q)
and #' — UNIFY(q, ¢') succeeds
new_goals— [py, ..., pn| REST(goals)]

answers — FOL-BC-ASK(K B, new_goals, COMPOSE(#',8)) U answers
return answers

37

Backward chaining example

Criminal{West)

Backward chaining example

Criminal{ West)

Americanix)

Weapon(v)

Sells(x,y,z)

[x/West)

Hostile(z)

39

Backward chaining example

Criminalf West)

American{ West)

Weapon(v)

U

Sells(x,v.z)

{x/West]

Hostile(z)

40

Backward chaining example

Criminal{ West)

Americani{ West)

Weapon(v)

U

Missile(v)

Sells(x,y,z)

{x/West}

Hostile(z)

41

Backward chaining example

Criminal{West)

AmericaniWest)

Weapon(v)

U

Missile(v)

{v/MI)

Sells(x,y,2)

i/ West, v/MI)

Hostile(z)

42

Backward chaining example

Criminalf West)

{x/West, v/M1, z/Nono)}

Hostile(z)

American{West) Weapon(v) Sells{West MI,z)
{ } { z/Nono }
Missile(v) || Missile(M1) | | Ovwns(Nono,MI)

{ viMl)

43

Backward chaining example

CriminaliTWest)

{x/West, wAMI, zNono}

AmericaniTWest) Weaponiy) Sells(TWest M1,z) Hostile(Nono)
i
Missileiy) MissilefM1) Cwns(Nono M1) | | EnemyiNono, America)
{yM1} {} i) {1

44

Properties of backward chaining

Depth-first recursive proof search: space is linear in size of proof

Incomplete due to infinite loops

= fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)

= fix using caching of previous results (extra space)

Widely used for logic programming CIZ 4527751 F)

Completeness of FC/BC for General
FOL

FC and BC are complete for Horn KBs but are
incomplete for general FOL KBs:

PhD (x) — HighlyQualified (x)
—PhD (x) = EarlyEarnings (x)
%)

%)

HighlyQualified(x) = Rich/(
EarlyEarnings (x) —> Rich{(

Query: Rich (Me)

 Can't prove query with FC or BC. Why?
 Does a complete algorithm for FOL exist?

Resolution algorithm

e Recall: KB operation boil down to satisfiability
KB|=«a if and only if (KB A —«) is unsatisfiable

e Algorithm: resolution-based inference
— Convert all formulas to CNF
— Repeatedly apply resolution rule

— Return unsatisfaible iff derive false — empty
clause

Resolution: brief summary

Full first-order version:
4\/---\/4’ ml\/---vmn
(GV VLNV LV VLNV my N g v my Vo v m)0

where Unify(f, —m) = 6.

The two clauses are assumed to be standardized apart so that they share no
variables. —— R WM T0) S & bRt 05, WA HLEAE.
For example,
—Rich(x) v Unhappy(x)
Rich(Ken)
Unhappy(Ken)

with 6 = {x/Ken}

Apply resolution steps to CNF(KB A —a); complete for FOL

Conversion to CNF

Everyone who loves all animals is loved by someone:
Vx [Vy Animal(y) = Loves(x,y)] = [3y Loves(y,x)]

1. Eliminate biconditionals and implications— VH [%: 25 iR
Vx [=Vy —=Animal(y) v Loves(x,y)] v [3y Loves(y,x)]

2. Move — inwards —f—N#: —Vxp=3dx—p, —Ixp=VVx—p
Vx [Ay =(—Animal(y) v Loves(x,y))] v [y Loves(y,x)]
Vx [y =——Animal(y) A —=Loves(x,y)] v [dy Loves(y,x)]

Vx [Ay Animal(y) A —Loves(x,y)] v [Ty Loves(y,x)]

Conversion to CNF contd.

3. Standardize variables—"F &R 4L each quantifier should
use a different one

Vx [Ay Animal(y) A —Loves(x,y)] v [z Loves(z,x)]

4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function (#7216 08 47)
of the enclosing universally quantified variables:

Vx [Animal(F(x)) A —Loves(x,F(x))] v Loves(G(x),x)

5. Drop universal quantifiers— 2 FE &R & 1A
[Animal(F(x)) A —=Loves(x,F(x))] v Loves(G(x),x)

6. Distribute v over A—FVvr AL E] A
[Animal(F(x)) v Loves(G(x),x)] A [—Loves(x,F(x)) v Loves(G(x),x)]

Resolution proof: definite clauses

- American(x) v — Weapon(y) v - Sells{x,y,z) v - Hostile(z) v Criminal(x) | = Crr’mr‘mf{ﬁ’es;ﬂ‘

— =

American(West) ‘ -1 American(West) v — Weapon(y) v - Sells(Westy,z) v -1 Hostile(z)

—_—_—_\—_\——__

= Missile(x) v Iﬁr.:;rpaw{x}| Weapon(y) v - Sells(West,y,z) v -1 Hostile(z)

_______\—__

Missile(M1) = Missile(v) v - Sells{West,y,z) v -1 Hostile(z) ‘

= Missile(x) v -1 Owns(Nonoe,x) v Sells(Westx Nono) ‘ = Sells{TWest M1,z) v — Hostile(z) ‘

—

Missile(M1) ‘ - Missile(MI) v — Owns{Nono MI) v — Hostile(Nonao) ‘

- T/

Owns(Nono, M) | = Owns(Nono,MI1) v — Hostile(Nono)

- 7

- Enemy(x,America) v Hostile(x) ‘ — Hostile(Nona) ‘

o 7

Enemy(Nono, America) ‘ — Enemy(Nono,America) ‘

=] ==

51

A brief history of reasoning

450B.C. Stoics propositional logic, inference (maybe)

322B.C. Aristotle “syllogisms™ (inference rules), quantifiers

1565 Cardano probability theory (propositional logic + uncertainty)
1847 Boole propositional logic (again)

1879 Frege first-order logic

1922 Wittgenstein proof by truth tables

1930 Godel = complete algorithm for FOL

1930 Herbrand complete algorithm for FOL (reduce to propositional)
1931 Godel —3 complete algorithm for arithmetic

1960 Davis/Putnam “practical” algorithm for propositional logic

1965 Robinson “practical” algorithm for FOL—resolution

52

Summary
— BB 3 A

i AL HEE 7] @ /Reducing first-order inference to propositional inference

e

4 —/ Unification

P i 2 A8 B L

— A5 B N/ Generalized Modus Ponens
fifi 58 1-1] /definite clauses
AEERT, e
JSEFH T T) % 4 A I T B Bk

A7 AR, IR EEE
5 25+ HH /Resolution

Summary

Propositional logic First-order logic
* Model checking * n/a
< propositionalization
 Modus ponens Modus ponens++
(Horn clauses) (Horn clauses)
* Resolution (general) * Resolution++ (general)

++: unification and substitution
* Key idea: variables in first-order logic

Variables yield compact knowledge representations.

54

e

« 9.3, 9.4, 9.9, 9.10(a3,a,b) (ZFE —fr) =9.3,
9.4, 9.6, 9.13(a,b,c) (F=Hh)

